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Number of Subtractions in Fixed-Transfer Disyersion Relations*
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Assuming the minimal requirements necessary to derive the Froissart bound, the number of subtractions
for the fixed-momentum-transfer dispersion relation in the unphysical region O&t&4p' turns out to be 2.
In the proof, the positiveness of all the derivatives of absorptive part with respect to I at t=O is used.
Physical implications and applications of this result are brieQy discussed.

' 'T has been shown by Froissart, ' some time ago, that
~ ~ if a scattering amplitude satisfies Mandelstam re-
presentation, then the forward scattering amplitude
(with relativistic normalization) is bounded by Cs ln'

(s/ss) at high energies, where s is the square of the
center-of-mass energy. Further, one of us" showed that
the only necessary assumptions to get the Froissart
result were:

(a) At fixed energy the scattering amplitude is
analytic with respect to t= —2k'(1 —cose), (where 0 is
the c.m. scattering angle and k the c.m. momentum)
in some neighborhood S of the segment t=0 ~ t=4p'.
Then it follows that the absorptive part of the ampli-
tude is analytic inside an ellipse with foci t= 0, t= —4k'
and semimajor axis t= 2k'+4tt'. This may be shown be-
cause from the result of Lehmann4 we know that the
partial-wave expansion of the absorptive part con-
verges in some ellipse, and due to the positiveness of the
expansion coeKcients, as a consequence of unitarity,
the largest ellipse in which the expansion converges has
a singularity at the extreme right in the t plane and
therefore cannot intersect the segment t=0, t=4p'.
Further, it follows that the amplitude is analytic inside
an ellipse with foci 3=0, I,= —4k' and semimajor axis

2k'+tt' —e', where e -+ 0 as s ~co .

(b) The second assumption necessary for the proof
is that for 0&t&4p' the absorptive part of the ampli-
tude is bounded by sN. This latter assumption is familiar
but it seems very hard to justify. Df one replaces this as-
sumption by the much weaker condition A (s,t) &exps~
for t&1/s~ one still gets, adapting the argument of
Refs. 2 and 3, that the forward scattering amplitude is
polynomial bounded for real s.)

Here we want to maintain the minimal requirements
necessary to derive the Froissart bound and take into
account the further requirement that the scattering
amplitude for fixed t, inside the region of analyticity
in t described above (f)), is analytic with respect to s

IN+1 A„(u', t)du'

where the familiar variable I is defined by

s+t+u= 2(M~s+Mtt')

and from unitarity A, (s,t), absorptive part associated
with the reaction A+8 ~A+8, and A „(u,t) associated
with A+B —r A+B, are positive. This will turn out to
be the crucial point of the present work.

For t inside S and s complex, with say, Res big
enough, the integrals appearing in the right-hand side
of (1) are uniformly convergent with respect to t and
are therefore analytic functions of t, inside X) for fixed s.
Therefore, the subtraction polynomial is itself analytic
in t inside S, and since this is certainly true for X+1
values of s, this is also true for the coefficients C„(t).

However, following the lines of Ref. 2 or 3, it is easy
to see that in addition to the information

(
F(s,0)

~
&Cs ln's, (2)

one can, given e in advance, find a value 0&tp&4p'
such that for 0& t& tp

i
F(s,t) ( &Cs'+'. (3)

We shall choose ~ strictly less than unity.
Then in the interval 0&/&/p we can write dispersion

relations with two subtractions only:

in a twice-cut plane, with cuts from s= (M~+Mtt)' to
+co and from s= —eo i —Im t to s=(M~ —Mtt)s t, —
where Mg and M~ are the masses of the scattering
particles.

Condition (b) enables us to write /+1 subtracted
dispersion relations for the amplitude for 4p,'& t&0

s~+' A, (s', t)ds'
F(s, t) = P C.(t)s"+

n=p $~N+1 $I s

s' A, (s', t)ds'
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s"(s' —s)

u A~(u, t)du
(4)

s. u" (u' —u)

Expressions (1) and (4) should coincide for 0&t&ts.
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the familiar identityUsing e

2 XN XN+i

Ia Xfi(+1 XiN+1 XIX'2X' —X X'3

w'e get for 0& t & to

n(t)+sP(t)+ P
A, (s', t)ds' u"+- A (u', t)du'-

=—Q C (t)s".

Now let us distinguish two cases.
(i) N is even. Then clearly,

1 A, (s', t)ds' 1
C~(t) =- A„(u', t)du'
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0
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p2 ~ )1/2
s ' exp 2 lns —

~

—1 ds must converge. (11)
4~ ln's/

This means that if on a segment st —ss o., exceeds (10)
by a factor 1+c this segment must go to zero as st goes
to infinity.

(b) In the symmetric case where the scattering ampli-
tude is invariant in the exchange of s and I (example
vr+s' scattering) (4) can be rewritten in terms of the
symmetrical variable s= (s—2/u'+t/2)'

z " ImF (s', t)ds'
F(s,1)=f(/)+

(s~+&/sl s (s s)
(12)

From Eq. (12) we deduce the property ImF(z, t)/Ims&0
which is the definition of a "Herglotz" function. ' There-
fore, F(s,t) has no complex zeros. We also notice that for
s real &L2p'+ (t/2) j', (d/ds)F (z,t) &0 and thence
F(s,t) has at most one real zero (which corresponds to
two complex conjugate zeros in the s plane). So the
property ImF(s, 1)&0 for 4p, '&t&0 is also valid in the
whole quadrant of the s plane Ims&0, Res&2y' —t/2
(with the corresponding symmetries). In addition, for
1&0 F(s,t) cannot decrease faster than 1/s' as s goes to
infinity. ~

(c) If analytic continuation to the third channel is
possible, which is the case if Mandelstam representation
is valid, one can investigate what happens for t —+ 4p'.
Let us take the completely symmetric case in st@. Then
the subtraction polynomial, taken at t=4p, ' gives us
essentially the E first zero-energy scattering lengths
in the t channel. These, if normal threshold behavior
is assumed, are finite. Therefore the integrals

A, (s't) ds'
etc.

4pl/I S

have a finite limit for t= 4p'. They represent a particular
case of the Froissart representation' of part'al-wave
amplitude in the t channel. Hence, from our result we
deduce that the scattering lengths at t= 4p,' are analytic

' See, for instance, J. A. Shohat and J. D. Tarnarkin, The.p&ob-
lem of Moments (American Mathematical Society, New York,
1943), p. 23.

7 This question will be developed in a forthcoming paper.
8 M. Froissart, Proceedings of the La Jolla Conference on Weak

and Strong Interactions, July 1961 (unpublished).

now know that there is at least a sequence of increasing
energies for which

a, (s) & (4s/p') ln'(s/ss) (10)

so that we have removed the major arbitrariness in the
Froissart bound. In fact, a stronger condition can be
obtained:

in the angular momentum l for Rel+ 2. More speci6cally
if we define the scattering lengths as

a~
——lim

q—sP

e"«s' sinb, (q)

where q is the c.m. momentum in the t channel, and
8~ the phase shift in the t channel, the representation

1 1"(/+1)

23I I'(l+3/2)gw 4''
A, (s',4p') ds'

is valid for l=2, 4, etc. , and since A, (s', 4p') is
positive we conclude that the scattering lengths are
positive for /~& 2. This could be extended to more real-
istic cases with sufhcient care.

(d) More generally for ~t~ &4p' the holomorphy
domain of the partia) wave in the t channel certainly
contains Rel& 2, and, if sufficient analyticity is assumed
this can be extended to the interior of the parabola

s K. Bardakci, Phys. Rev. 127, 1832 (1962)."S.W. MacDowell (to be published).

t= (2//, iX)'—'A real

by using the Legendre polynomial expansion of A, (s,t)
instead of the power-series expansion. This should allow
one to improve the holornorphy domain previously
obtained by Bardakci. '

(e) If, in the t channel, poles with angular momentum
0 or 1 occur for t&4p', the conclusions are unchanged
because one can merely subtract them. Poles with higher
angular momentum will be considered in a separate
publication by MacDowell. "

Finally, we should mention that we are aware of the
fact that the main result of this paper, the number of
subtractions for t&4p' is at most two, comes out very
naturally in the Regge pole dominance hypothesis,
because then, for 0(t&4y' the even signature poles
should dominate and hence the dominant Regge tra-
jectory cannot cross I= 2 for t&4p, ' without producing
a pole which was not present by assumption. However,
the whole point of our paper is to show that this is true
with much more generality.
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